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a b s t r a c t

The application of support vector machine classification (SVM) to combined information from magnetic

resonance imaging (MRI) and [F18]fluorodeoxyglucose positron emission tomography (FDG-PET) has

been shown to improve detection and differentiation of Alzheimer’s disease dementia (AD) and

frontotemporal lobar degeneration. To validate this approach for the most frequent dementia syndrome

AD, and to test its applicability to multicenter data, we randomly extracted FDG-PET and MRI data of 28

AD patients and 28 healthy control subjects from the database provided by the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) and compared them to data of 21 patients with AD and 13 control

subjects from our own Leipzig cohort. SVM classification using combined volume-of-interest informa-

tion from FDG-PET and MRI based on comprehensive quantitative meta-analyses investigating

dementia syndromes revealed a higher discrimination accuracy in comparison to single modality

classification. For the ADNI dataset accuracy rates of up to 88% and for the Leipzig cohort of up to 100%

were obtained. Classifiers trained on the ADNI data discriminated the Leipzig cohorts with an accuracy

of 91%. In conclusion, our results suggest SVM classification based on quantitative meta-analyses of

multicenter data as a valid method for individual AD diagnosis. Furthermore, combining imaging

information from MRI and FDG-PET might substantially improve the accuracy of AD diagnosis.

& 2012 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

Imaging biomarkers such as regional atrophy as measured by
structural magnetic resonance imaging (MRI), glucose hypome-
tabolism as measured by [F18]fluorodeoxyglucose positron emis-
sion tomography (FDG-PET) or brain b-amyloid load as measured
by PIB- (Pittsburgh compound B) and florbetaben-PET have been
reported to be useful in diagnosis and/or differential diagnosis of
dementia (Sabri et al., 1999, 2008; Hoffman et al., 2000; Rosen et al.,
2002; Buckner et al., 2005; Diehl et al., 2004; Jeong et al., 2005;
d Ltd. All rights reserved.

tained from the Alzheimer’s
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Diehl-Schmid et al., 2007; Edison et al., 2007; Fung and Stoeckel,
2007; Jack et al., 2008; Schroeter et al., 2007, 2008, 2009; Schroeter
and Neumann, 2011; Davatzikos et al., 2008; Klöppel et al., 2007;
Barthel et al., 2011). Therefore, it is now being suggested to in-
corporate such imaging markers into criteria for in vivo diagnosis of
dementia (Dubois et al.,. 2007; Kipps et al., 2009).

Most previous biomarker studies focused on one specific bio-
marker or compared sensitivity and specificity of different single
biomarkers (Fung and Stoeckel, 2007; Davatzikos et al., 2008; Habeck
et al., 2008; Klöppel et al., 2007; Chaves et al., 2009; Habert et al.,
2009; Horn et al., 2009; Ramirez et al., 2009a). Obviously, the com-
bination of biomarkers potentially offers further improvements, and
statistical methods such as multivariate pattern analyses using
support vector machine (SVM) classifications not only enable
automatic classification using one specific biomarker, but also
provide a tool to combine two or more different biomarkers
within the same classification model. For example, it has been
shown that combining information from FDG-PET and MRI sub-
stantially improves detection (Hinrichs et al., 2009; Zhang et al.,
2011) and differentiation of Alzheimer’s disease dementia (AD)
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and frontotemporal lobar degeneration (Dukart et al., 2011). The
volume-of-interest (VOI) approach used in Dukart et al. (2011),
although less sensitive compared to whole-brain classification
when using a single modality, was far superior to whole-brain
classification when combined information from FDG-PET and MRI
was used. VOIs used in this study were extracted from two com-
prehensive systematic and quantitative meta-analyses investigat-
ing both dementia syndromes in very large cohorts with anato-
mical likelihood estimates (ALE) (Schroeter et al., 2007, 2009).
Accordingly, these VOIs represent the prototypical networks
affected by these diseases and are not biased to a specific dataset.
Furthermore, the preprocessing algorithm (Dukart et al., 2011)
was designed to overcome difficulties which occur due to the use
of different scanner types and different scanning sequences with
different scaling and resolution. However, the generalizability of
the results of that study (Dukart et al., 2011) was highly limited
due to the low number of subjects and because data from only
one center were used for SVM classification.

The goal of the present study was to further validate the approach
proposed by Dukart et al. (2011) and to assess its generalizability to
data from multicenter studies. To achieve this, we applied the
identical preprocessing and classification algorithm to two different
datasets. Classification accuracy results using FDG-PET and MRI data
from the Clinic of Cognitive Neurology at the University of Leipzig
were compared to data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (www.adni-info.org). To avoid a classifica-
tion bias towards the ADNI data (because substantially more control
subjects and patients were available in this database than in the
Leipzig cohort), we restricted the number of subjects and patients
included from this database to make the numbers comparable with
the Leipzig cohort. This is important because otherwise a combined
classifier from both datasets would have mainly learned the distribu-
tion of subject and patient data in the ADNI cohort due to the
substantially higher amount of subjects while practically ignoring the
single center data. The ADNI database is a free access database
containing, besides comprehensive neuropsychological and clinical
evaluation, FDG-PET and MRI data of AD patients and healthy control
subjects. We hypothesized that multicenter MRI and FDG-PET data
obtained using different scanner types and sequences might be used
to improve the accuracy of AD diagnosis in single clinical centers.
Furthermore, we hypothesized that it would be possible to confirm
our recent findings – namely improvement of individual dementia
diagnosis with SVM classification of combined MRI and FDG-PET data
and the aforementioned VOI approach based on meta-analyses.
2. Methods

2.1. Leipzig cohort

2.1.1. Subjects

We analyzed FDG-PET and T1-weighted MRI data of 21 patients (Table 1) with

an early stage of probable AD, 14 patients with an early stage of FTLD and 13

control subjects. Patients were recruited from the Clinic of Cognitive Neurology at

the University Hospital Leipzig. Probable AD was diagnosed according to the

clinical NINCDS-ADRDA criteria (McKhann et al., 1984). Diagnosis of FTLD was

based on clinical criteria suggested by Neary et al. (1998). The control group

included subjects who visited the Clinic with subjective cognitive complaints,

which were not objectively confirmed by a comprehensive neuropsychological

and clinical evaluation. This control group was chosen because, in clinical practice,

it is crucial to discriminate between these subjects and patients with an early

stage of neurodegenerative disease. Informed consent was obtained from all

subjects. The research protocol was approved by the Ethics Committee of the

University of Leipzig, and was in accordance with the latest version of the

Declaration of Helsinki.

2.1.2. MRI data

For each subject, a high-resolution T1-weighted MR scan was obtained consist-

ing of 128 sagittal slices adjusted to the anterior commissure-posterior commissure
(ACPC) line and with a slice thickness of 1.5 mm and pixel size of 1�1 mm2. MRI

was performed on two different 3T scanners (MedSpec 30/100, Bruker Biospin,

Ettlingen Germany and Magnetom Trio, Siemens, Erlangen, Germany) using two

different T1-weighted sequences (MDEFT or MP-RAGE with TR¼1300 ms,

TI¼650 ms, TE¼3.93 ms or TE¼10 ms; FOV 25�25 cm2; matrix¼256�256 vox-

els). On the MedSpec scanner, only the MDEFT sequence and on the Magnetom Trio

scanner, either MDEFT or MP-RAGE sequences were used.

2.1.3. FDG-PET data

Each subject also underwent FDG-PET imaging (�370 MBq) within a few

weeks before or after the MR scan. All PET data were acquired on a Siemens ECAT

EXACT HRþ scanner (CTI/Siemens, Knoxville, TN, USA) under a standard resting

condition in 2-dimensional (2D) mode. Sixty-three slices were simultaneously

collected with an axial resolution of 5 mm full width at half maximum (FWHM)

and an in-plane resolution of 4.6 mm FWHM. After correction for attenuation,

scatter, decay and scanner-specific dead-time, images were reconstructed by

filtered back-projection using a Hann filter of 4.9 mm FWHM. The 63 transaxial

slices obtained had a matrix of 128�128 voxels with an edge length of 2.45 mm.

The resulting dynamic 0–60 min p.i. ECAT volume files were separated into single

frames (ANALYZE format) using the import tool from the program MRIcro (http://

www.sph.sc.edu/comd/rorden/mricro.html) and the last three frames of 10 min

each, starting from 30 to 60 min post-injection, were included. Each subject’s

frames were spatially realigned to minimize inter-frame motion artefacts and a

mean image of these three frames was calculated for each subject. These mean

images were chosen for further analysis.

2.2. ADNI database

2.2.1. ADNI subjects

To validate the multimodal classification approach (Dukart et al., 2011) and to

make it more reliable and generalizable to multicenter data, we extracted MR and

FDG-PET images of 28 AD patients and 28 healthy control subjects (Table 1) from

the ADNI database. The first available 28 AD patients were included into the study.

Control subjects were selected to match AD patients for age and gender. This

substantially smaller group size than currently available in the ADNI database was

used for classification to insure a comparability between both cohorts in terms of

group sizes. The ADNI is a partnership of the National Institute of Aging, the

National Institute of Biomedical Imaging and Bioengineering, the Food and Drug

Administration, private pharmaceutical companies and non-profit organizations.

Diagnosis of AD was based on NINCDS/ARDRA criteria (McKhann et al., 1984).

Exclusion criteria for the ADNI data were any significant neurological disease

other than AD, history of head trauma followed by persistent neurological deficits

or structural brain abnormalities, psychotic features, agitation or behavioral

problems within the last 3 months or history of alcohol or substance abuse. For

most subjects multiple follow-up FDG-PET and MR scans are available. To ensure

that our approach is applicable for the early diagnosis of dementia for all subjects,

data from the first visit FDG-PET and MR scan were used.

2.2.2. ADNI MRI data

The MRI dataset included standard T1-weighted images obtained with

different scanner types using volumetric MP-RAGE sequence varying in TR and

TE with an in-plane resolution of 1.25�1.25 mm and 1.2 mm sagittal slice

thickness. Only images obtained using 1.5 T scanners were used in this study.

All images were preprocessed as described on the ADNI website (http://www.loni.

ucla.edu/ADNI/Data/ADNI_Data.shtml) including distortion correction and B1

non-uniformity correction.

2.2.3. ADNI FDG-PET data

All ADNI subjects also underwent FDG-PET scanning obtained with different

scanner types and using one of three different protocols: (1) dynamic: a 30-min,

six-frame acquisition (six 5-min frames), with scanning from 30 to 60 min post-

FDG injection; (2) static: a single-frame 30-min acquisition with scanning 30–60

min post-injection; and (3) quantitative: a 60-min dynamic protocol consisting of

33 frames, with scanning beginning at injection and continuing for 60 min that

can be used to determine absolute glucose metabolic rate via kinetic modeling

using an internal input function obtained from the internal carotid arteries. The

majority of the scans in the ADNI study were acquired with the first acquisition

protocol. The PET images further differed in resolution, image dimensions and

count statistics. As with the FDG-PET data of the Leipzig cohort, the frames from

30 to 60 min post-injection were spatially realigned to minimize inter-frame

motion artifacts and a mean image of these frames was calculated for each subject.

These mean images were used for further analysis.

2.3. Preprocessing of MRI and FDG-PET data

For the MRI and FDG-PET data the preprocessing procedure as recently

described in detail in Dukart et al. (2011) was applied. In short, this procedure

included interpolation of both FDG-PET and MR images to an isotropic resolution

www.adni-info.org
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Table 1
Subject group characteristics.

Leipzig cohort ADNI dataset ANOVA (d.f.,F,P)

Controls AD Controls AD

Number 13 21 28 28 –

Male/female 7/6 9/12 20/8 19/9 –

Age (years) 53.976.0 61.176.7n 75.474.6** 75.877.2** 3,58.3,o0.001

CDR (score) 0.2370.26 0.7170.25n 0.0270.09** 0.8070.25n 3,77.5,o0.001

MMSE (score) n.a. 23.273.9 28.971.3 23.872.2n 2,41.0,o0.001

Education (years) 12.373.1 10.773.1 16.573.2 14.873.5 3,14.9,o0.001

Mean7standard deviation. In the Leipzig cohort MMSE was missing for 1 AD patient.

AD—Alzheimer’s disease, ADNI—Alzheimer’s Disease Neuroimaging Initiative, CDR—Clinical Dementia Rating Scale, MMSE—Mini Mental State Examination, n.a.—not

available.
n Significant difference to the control group from the same dataset,
nn Significant difference to the same diagnosis group from the Leipzig cohort dataset.

Fig. 1. VOIs used for differentiation between AD patients and control subjects

plotted onto an average size brain. In blue MRI VOIs and in red FDG-PET VOIs are

shown. Neurological convention (left is left), AD—Alzheimer’s disease, FDG-

PET—[F18]fluorodeoxyglucose positron emission tomography, MRI magnetic

resonance imaging, VOI—volume-of-interest.
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of 1�1�1 mm3, bias correction for inhomogeneity artifacts for MR data, partial

volume effect correction and masking of non-gray matter voxels in FDG-PET data

and spatial normalization to an average size template created from all subjects

using the DARTEL approach (Ashburner, 2007). The same deformations calculated

based on an MRI template were applied to MRI and to coregistered FDG-PET

images. After smoothing of FDG-PET and MR images with a Gaussian kernel of

12 mm FWHM, intensity normalization of FDG-PET data to the cerebellum (Dukart

et al., 2010) and subsequent masking, an accurate anatomical overlap of both

modalities was obtained. The binary mask was obtained by excluding all voxels in

the first and the last template created by the DARTEL approach with a probability

of below 0.2 for belonging to gray matter and using only voxels for classification

that exceed this threshold in both templates. This mask was applied twice: firstly

prior to smoothing to avoid misclassification, and secondly, after the smoothing to

avoid big edge effects (Dukart et al., 2011). Both imaging modalities then have the

same spatial orientation, resolution and effective smoothness. Individual intensity

normalization to cerebellum also accounts for initially different count statistics of

FDG-PET images. However, both imaging modalities are still in the space of the

average template created from all subjects. To extract regional values correspond-

ing to VOIs reported in the activation likelihood estimation (ALE) meta-analysis

investigating AD (Schroeter et al., 2009) all images were normalized to Montreal

Neurological Institute (MNI) space by applying affine-only transformations

obtained when normalizing the average template from all subjects to the MNI

space gray matter template provided by Statistical Parametric Mapping (SPM).

2.3.1. VOI extraction

VOI coordinates were extracted using the MRIcron 3D fill tool (http://www.

sph.sc.edu/comd/rorden/mricron) as described in Dukart et al. (2011) from a

comprehensive, systematic and quantitative ALE meta-analysis investigating

biomarkers of AD in MR and FDG-PET images (Fig. 1, Table 2). These VOIs

represent the maxima of atrophy or reductions in glucose utilization in AD.

The meta-analysis included a total number of 1351 AD patients and 1097 healthy

control subjects (Schroeter et al., 2009). This meta-analysis extracted the prototypical

network of AD by applying what is currently the most sophisticated and best-validated

of coordinate-based voxel-wise meta-analyses, ALE. Because the coordinates in the

meta-analysis were reported in the Talairach space, they were transformed to MNI

space according to a formula proposed by Matthew Brett (published on the Internet:

http://www.mrccbu.cam.ac.uk/Imaging/Common/mnispace.shtml). Six VOIs were

extracted from each of the modalities by drawing a sphere with a radius of 5 mm

around the reported coordinate and restricting the VOI to non-zero intensities within

the sphere. The mean value of each VOI was used for classification.

2.3.2. SVM

SVM classification was conducted with the freely available LIBSVM software

(Chang and Lin, 2001) using the Matlab interface. Multivariate pattern classifica-

tion was performed with a linear kernel by identifying a separating linear

hyperplane that maximizes the distance between different clinical groups based

on VOI information. Additionally, the cost parameter c was optimized for each

dataset by maximizing the leave-one-out cross-validation accuracy within the

training cohort using a grid search algorithm by exponentially increasing the c and

then refining the search grid around the detected accuracy maximum. The

classifier trained using the obtained c was then applied to predict the independent

cohort. The cross-validation of the trained SVM was performed by using the leave-

one-out method. The procedure iteratively leaves out the information of each

subject and trains the model on the remaining subjects for subsequent class

assignment of the person that was not included in the training procedure. This

validation method enables the generalization of the trained SVM to data that have

never been presented to the SVM algorithms previously. The reported accuracy is

the percentage of subjects correctly assigned to the clinical diagnosis. To improve

the validity of this approach, separate classifiers were trained based either on the
dataset from the ADNI database, the dataset of AD patients and control subjects

from the Leipzig cohort or on combined data from both samples. Leaving-one-out

cross-validation was performed for all classifiers. Furthermore, classifiers trained

only on the ADNI cohort were applied to the Leipzig cohort and vice versa. SVM

classification was applied separately to VOIs extracted from FDG-PET and MR data

and to combined information from both imaging modalities. Feature combination

was achieved by concatenating FDG-PET and MR features in a single vector.
2.4. Statistical analysis

Group comparisons for age, education, the MMSE (Mini Mental State Examina-

tion; Folstein et al., 1975) and the CDR (Clinical Dementia Rating Scale; Morris, 1993)

were performed by conducting one-way ANOVAs (analyses of variance). If an

ANOVA revealed significant between-group differences, post-hoc Bonferroni t-tests

were performed with a significance threshold of po0.05 corrected for multiple

comparisons. Group differences regarding sex were evaluated using a chi-square test

for independent samples. The statistical analysis was performed with the commer-

cial software package SPSS 17.0 (http://www.spss.com/statistics/).
3. Results

3.1. Clinical characteristics

Clinical characteristics are illustrated in Table 1. The chi-
square test for independent samples did not reveal any statistical
differences in sex between the four groups [w2(3)¼5.76; p¼0.12].
The ANOVAs revealed significant between-group differences in age,

http://www.sph.sc.edu/comd/rorden/mricron
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Table 2
Coordinates of VOIs used for SVM classification.

AD vs. Controls

FDG-PET BA Lat x y z SVM weight

Angular gyrus 39 L �38 �68 37 2.4

Angular gyrus 39 R 43 �68 33 1.7

Posterior superior temporal sulcus 21/22

Anterior medial frontal cortex 9/10 R 1 31 31 �2.9

Pregenual anterior cingulate gyrus 32

Inferior precuneus 31 R 1 �36 27 6.2

Dorsal posterior cingulate cortex 23

Posterior superior temporal sulcus 21/22 L �51 �61 23 �0.7

Middle inferior temporal sulcus 20/21 R 59 �31 �23 2.2

MRI BA Lat x y z

Posterior insula 13 L �38 �25 15 �0.2

Medial thalamus L �5 �13 3 �0.3

Hippocampal body/tail R 31 �38 �6 4.1

Middle temporal gyrus/superior temporal sulcus 21/22 L �63 �21 �5 1.5

Amygdala, anterior hippocampal formation, uncus, (trans-) entorhinal area 28/34 R 25 �8 �18 3.2

Amygdala, anterior hippocampal formation, uncus, (trans-) entorhinal area 28/34 L �26 �8 �18 2.4

Coordinates are in MNI space (L left, R right). The absolute value of the weight (arbitrary units) indicates the importance of the corresponding region for separation

between AD and control subjects relative to other VOIs.

AD—Alzheimer’s disease, BA—Brodmann area, FDG-PET—[F18]fluorodeoxyglucose positron emission tomography, MRI—magnetic resonance imaging, VOI—volume-of-

interest, SVM—support vector machine.

Table 3
Accuracy rates for VOI-based SVM classification for FDG-PET and MRI separately

and for combined information.

FDG-PET

(%)

MRI

(%)

FDG-PET & MRI

(%)

ADNI dataset 87.5 80.4 85.7

Leipzig cohort 97.1 88.2 100.0

Combined dataset (ADNI and Leipzig

cohort data)

91.1 80.0 90.0

ADNI (combined dataset) 87.5 78.6 83.9

Leipzig cohort (combined dataset) 97.1 82.4 100.0

Accuracy represents the percentage of subjects correctly assigned to the respective

groups.

AD—Alzheimer’s disease, ADNI—Alzheimer’s Disease Neuroimaging Initiative,

FDG-PET [F18]fluorodeoxyglucose positron emission tomography, MRI—magnetic

resonance imaging, VOI—volume-of-interest, SVM—support vector machine.

Table 4
Differentiation rates for combined VOI information from FDG-PET and MRI.

Accuracy (%) Sensitivity (%) Specificity (%) BER (%)

ADNI dataset 85.7 89.3 82.1 14.3

Leipzig cohort 100.0 100.0 100.0 0.00

Combined dataset 90.0 91.8 87.8 10.2

ADNI—Alzheimer’s Disease Neuroimaging Initiative, BER—balanced error rate,

FDG-PET—[F18]fluorodeoxyglucose positron emission tomography, MRI—mag-

netic resonance imaging, VOI—volume-of-interest.
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CDR, MMSE and education. AD subjects in the ADNI dataset had, as
expected, significantly lower MMSE scores compared with the ADNI
control group [t(54)¼10.7; po0.001]. There was no significant
difference in the MMSE between AD patients in the ADNI and the
Leipzig cohort dataset [t(46)¼0.72; p¼1.0]. CDR scores also dif-
fered significantly between AD patients and control subjects in the
ADNI [t(54)¼15.63; po0.001] and in the Leipzig cohort dataset
[t(32)¼5.36; po0.001] but not between both groups of AD patients
[t(47)¼1.23; p¼0.93]. The control group from the Leipzig cohort
had significantly higher CDR scores in comparison to the control
group from the ADNI database [t(39)¼3.87; p¼0.025]. Age was
substantially different between the two datasets, with ADNI
patients [t(47)¼7.27; po0.001] and ADNI control subjects
[t(39)¼12.59; po0.001] being older than the corresponding group
from the Leipzig cohort. Moreover, there was a significant differ-
ence between AD patients and control subjects in the Leipzig cohort
set with regard to mean age [t(32)¼3.18; p¼0.008] but not in the
ADNI dataset [t(54)¼0.22; p¼1.0].

3.2. SVM results

The differentiation accuracy for single modality classification
using leaving-one-out cross-validation was highest with 97%
using FDG-PET VOI information in the Leipzig cohort dataset
(Table 3). Lowest accuracy with 80% was obtained using MRI VOI
information from the ADNI database. Classification accuracy using
FDG-PET information was far superior to MRI-based classification
in both groups and similar to the accuracy of combined FDG-PET
and MRI data. For this combined information, accuracy rates
ranged between 86% and 100% with lowest accuracy using only
the ADNI dataset and highest accuracy using the Leipzig cohort
dataset. The overall accuracy for the combined dataset using both
modalities was 90%, with sensitivity of 89% and specificity of 82%
for subjects from the ADNI database and 100% sensitivity and
specificity for data from the Leipzig cohort (Table 4).

One might assume that classifiers obtained from multicenter
data as represented in the ADNI dataset enable a high discrimina-
tion accuracy for single center data. Indeed, the discrimination for
Leipzig cohort patients using combined FDG-PET and MRI infor-
mation from the ADNI dataset for training was very high with 97%
whereas the opposite comparison predicting ADNI data using the
Leipzig cohort dataset revealed lower, however still high, accuracy
of 82% (Table 5). Accuracies observed using only FDG-PET or MRI
were equal or lower compared to the use of combined information.
4. Discussion

In our study we investigated classification accuracies for detec-
tion of AD using FDG-PET, MRI or combined information from both
imaging modalities in two independent cohorts. Thereby, we used
VOIs centered to coordinates reported in a comprehensive meta-



Table 5
Accuracy rates for VOI-based SVM classification using independent cohorts.

FDG-PET (%) MRI (%) FDG-PET & MRI (%)

ADNI-Leipzig cohort

Accuracy 97.1 70.6 97.1

Sensitivity 100.0 81.0 100.0

Specificity 92.3 53.9 92.3

BER 3.8 32.6 3.8

Leipzig cohort-ADNI

Accuracy 75.0 73.2 82.1

Sensitivity 82.1 85.7 78.6

Specificity 67.9 60.7 85.7

BER 25.0 26.8 17.9

ADNI—Alzheimer’s Disease Neuroimaging Initiative, BER—balanced error rate,

FDG-PET—[F18]fluorodeoxyglucose positron emission tomography, MRI—mag-

netic resonance imaging, SVM—support vector machine, VOI—volume-of-interest,

- indicates the direction of prediction for each classification.
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analysis investigating AD (Schroeter et al., 2009) as features for
SVM classification. Very high accuracies for discrimination between
AD patients and control subjects were obtained in both cohorts
using only FDG-PET or combined information from both imaging
modalities while MRI based accuracies were substantially lower for
all comparisons. Combined information from FDG-PET and MRI
were superior to both single modalities when using classifiers
trained on one cohort for prediction of the second independent
cohort. Our results are consistent with previous research showing
that application of multivariate statistical methods on imaging
markers might provide a substantial gain in accuracy for early
detection and differentiation of dementia syndromes (Fung and
Stoeckel, 2007; Davatzikos et al., 2008; Klöppel et al., 2007; Chaves
et al., 2009; Hinrichs et al., 2009).

While all studies applying multivariate statistical methods
have shown high detection and differentiation rates for different
dementia syndromes, some of these increased accuracy rates have
been obtained with a trade-off in generalizability of the proposed
approaches to new datasets. This is the case because the number
of features used to obtain high classification accuracies was
determined by potentially biased feature selection methods.
Thereby, a minimum number of regions are identified that
provide optimum separation between different groups within
the specific dataset. Subsequently, the same dataset is used to
validate the classification approach based on selected features
(Fung and Stoeckel, 2007; Davatzikos et al., 2008; Gerardin et al.,
2009). This method, although providing optimum classification
accuracy in a specific sample, does not necessarily enable
high classification accuracy for data from other clinical centers
as some of the features might be specific to the study cohort.
Here we avoided this potential bias by using meta-analysis
based VOIs and additionally validated our approach by the use
of two independent cohorts. The obtained accuracies of up to
100% for the Leipzig cohort and of up to 87% for the ADNI dataset
are very high. The results using only the ADNI cohort are
comparable to previously reported accuracies using similar data-
sets for both FDG-PET and MRI (Hinrichs et al., 2009; McEvoy
et al., 2009).

The results of our study are in line with previous findings
suggesting that combining information from different imaging
modalities which have been reported to be sensitive biomarkers
for a specific neurodegenerative disorder can substantially
improve detection and differentiation of dementia in comparison
to single modality approaches (Fan et al., 2008; Dukart et al.,
2011). However, this improvement combining multimodal infor-
mation has so far only been observed if VOI information were
used but not using whole-brain information from FDG-PET and
MRI (Dukart et al., 2011). Our results indicate that this VOI
approach is applicable to new data sets and does not depend on
specific scanner types or sequences. The combination of VOI
information from FDG-PET and MRI was superior or at least
comparable to the best single-modality VOI-based classification
for all comparisons. We suggest that regions extracted only from
the AD ALE meta-analysis (Schroeter et al., 2009) might be
sufficient to obtain a reasonable differentiation accuracy for AD
patients and control subjects without any further feature selection
procedures. Additionally, our results suggest that classifiers trained
on data provided by ADNI, which is an open access and multicenter
database, result in very good discrimination accuracy for new data
from a single clinical center and so even increase the potential
applicability of the proposed approach in the clinical environment.

The proposed approach can be easily implemented in a clinical
environment using, for example, ADNI data to train a SVM classifier
(e.g., with the svmtrain function implemented in LIBSVM, Chang and
Lin, 2001) using the reported feature coordinates. It is important to
note that the pre-processing algorithm should be kept constant
between training and testing as the feature weights distribution
might depend on some pre-processing steps. The obtained classifier
can then be applied to estimate the likelihood of AD (or frontotem-
poral lobar degeneration as shown in our previous study, Dukart
et al., 2011) in new subjects/patients based on their FDG-PET and
MRI data. Thereby, the trained SVM model is applied on the mean
values extracted from the individual subject’s images at reported
MNI coordinates using commonly available SVM implementations
(e.g., the svmpredict function implemented in LIBSVM). The advan-
tage of this approach is that additionally to the binary predicted
label it also provides a probability value for the subject
to belong to a specific category, thereby improving single subject
diagnosis of AD as a supportive feature. Additionally, with a com-
parably low amount of features it enables a very high accuracy of
88–100% for discrimination of AD patients and control subjects
which has now been validated using two independent cohorts.
Additionally, as shown in a previous study, the proposed approach
also provides a very good accuracy of up to 94% for differentiation of
AD patients from patients with frontotemporal lobar degeneration
(Dukart et al., 2011), which is another common type of neurodegen-
erative disease in aging. This additional sensitivity for both dementia
syndromes is obtained by simple inclusion of features reported in
meta-analyses discriminating patients with frontotemporal lobar
degeneration from healthy control subjects (Schroeter et al., 2007,
2008). The accuracy of up to 92% obtained using the proposed
algorithm for the three-group differentiation of AD patients, patients
with frontotemporal lobar degeneration and healthy control subjects
is the highest reported up to now, supporting the implementation of
the proposed algorithm in clinical routine.

In our study we used only around 30% of available control
subjects and AD patients from the ADNI database. Therewith, we
wanted to avoid substantial differences in group sizes between the
ADNI and Leipzig cohorts as it has been shown in recent research
that increasing the group size of the training cohort also increases
classification accuracies for discrimination of AD patients and control
subjects (Abdulkadir et al., 2011). According to this study, we would
expect even a further increase in classification accuracies using all
data provided by the ADNI for training of the SVM classifier.

Some further limitations need to be considered regarding the
interpretation of our results. Firstly, as the control group from the
Leipzig cohort consists of subjects with subjective cognitive com-
plaints, it is more likely to contain subjects with silent neurode-
generative disease compared to a population of non-complainers
therewith potentially biasing the obtained accuracies. However, we
would expect that a potential bias towards a silent neurodegen-
erative disease in the control group would rather lower the
discrimination accuracy between control subjects and AD patients.
Secondly, a further potential bias in the Leipzig cohort is the slightly
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lower age of control subjects compared to AD patients, which might
have contributed to the observed very high classification accuracy.
Thirdly, our AD groups consisted of subjects who were at an already
at a already manifest dementia stage of probable AD. For a higher
clinical value of the proposed algorithm, it is therefore necessary to
demonstrate that the proposed algorithm is also able to detect AD
on even earlier stages such as mild cognitive impairment ahead of
full manifestation of clinical symptoms. Lastly, a potential bias in
differences in classification accuracies observed in both cohorts
might be introduced by the different field strength of the acquired
MRI data as all MRI scans used in the Leipzig cohort were acquired
on a 3 T scanner while all images used from the ADNI cohort were
acquired on a 1.5 T scanner. We think that for various reasons this
limitation is unlikely to have introduced a substantial bias to our
results as the obtained accuracies using only MRI information in
both cohorts are comparable to each other and the observed
differences are equally expressed in the FDG-PET modality.

4.1. Conclusion and perspectives

We investigated the applicability of the recently proposed
approach for detection and differentiation of dementia syndromes
using multimodal information from FDG-PET and MRI and meta-
analysis based definition of VOIs to data from multiple clinical
centers. For this purpose we used data from the ADNI database. The
results are in line with previous findings that combining FDG-PET
and MRI information improves detection of patients with early to
moderate stages of AD. Furthermore, this approach allows using
data from open access databases to improve clinical diagnosis of
dementia in single clinical centers. Therefore, it has a high relevance
for general clinical application. Additionally, our approach provides
an easy method to integrate further biomarkers (such as from
cerebrospinal fluid or other imaging modalities) to improve clinical
diagnosis of various dementia syndromes. We conclude that SVM
classification is a valid method for individual detection of frequent
dementia syndromes using prototypical disease-related networks
as extracted from meta-analyses and by combining multimodal
imaging information.
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Initiative, A. s.D.N., 2011. Effects of hardware heterogeneity on the perfor-
mance of SVM Alzheimer’s disease classifier. Neuroimage 58, 785–792.

Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. Neuro-
image 38, 95–113.

Barthel, H., Gertz, H.J., Dresel, S., Peters, O., Bartenstein, P., Buerger, K., Hiemeyer,
F., Wittemer-Rump, S.M., Seibyl, J., Reininger, C., Sabri, O., Florbetaben Study
Group, 2011. Cerebral amyloid-b PET with florbetaben (18F) in patients with
Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic
study. Lancet Neurology 10, 424–435.

Buckner, R.L., Snyder, A.Z., Shannon, B.J., LaRossa, G., Sachs, R., Fotenos, A.F.,
Sheline, Y.I., Klunk, W.E., Mathis, C.A., Morris, J.C., Mintun, M.A., 2005.
Molecular, structural, and functional characterization of Alzheimer’s disease:
evidence for a relationship between default activity, amyloid, and memory.
Journal of Neuroscience 25, 7709–7717.

Chang, C.C., Lin, C.J., 2001. LIBSVM: a Library for Support Vector Machines.
Software available at: /http://www.csie.ntu.edu.tw/�cjlin/libsvm/S.
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Möller, H.E., Villringer, A., Sabri, O., Schroeter, M.L., 2010. Differential effects of
global and cerebellar normalization on detection and differentiation of
dementia in FDG-PET studies. Neuroimage 49, 1490–1495.

Dukart, J., Mueller, K., Horstmann, A., Barthel, H., Möller, H.E., Villringer, A., Sabri,
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